Interventional pharmacology

The year in-review

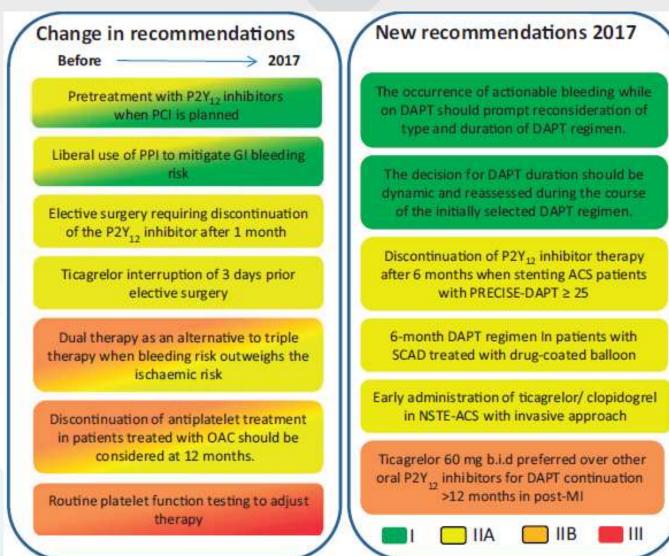
Roxana Mehran, MD

FACC, FACP, FCCP, FESC, FAHA, MSCAI

Professor of Medicine, Population Health Science and Policy nterventional Cardiovascular Research and clinical trials ICAHN school of Medicine at Mount Sinai hospital

Conflict of interest

- Consulting Fees/Honoraria: Abbot Vascular, American College of Cardiology, AstraZeneca, Medscape, Shanghai BraccoSine, Spectranetics, Abiomed, The Medicines Company (spouse)
- **DSMB membership** paid to the institution: Watermark Research Partners
- Executive Committee: Janssen Pharmaceuticals
- Grant/Reseach Support (Institutional): AstraZeneca, Bayer, Beth Israel Deaconess, Bristol Myers-Squibb, CSL, Behring, Diachi Sankyo, Medtronick, Novartis Pharmaceuticals, OrbusNeich
- Speaker fees: Lifescience Conference


Interventional pharmacology: a year in-review

Percutaneous coronary intervention

2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS

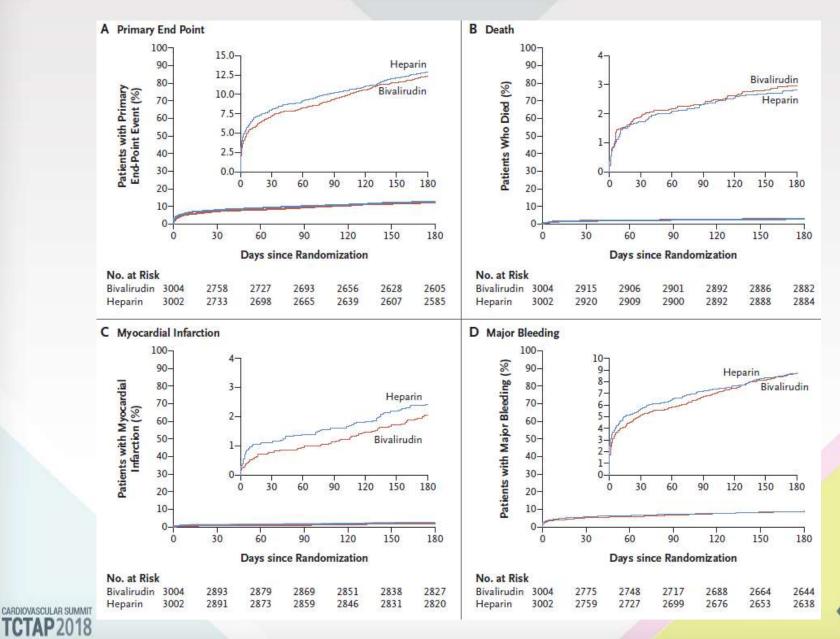
cardiovascular summit TCTAP2018

Valgimigli et al, Eur Heart J. 2018 Jan 14;39(3):213-260.

VRF

ORIGINAL ARTICLE

Bivalirudin versus Heparin Monotherapy in Myocardial Infarction


D. Erlinge, E. Omerovic, O. Fröbert, R. Linder, M. Danielewicz, M. Hamid,
E. Swahn, L. Henareh, H. Wagner, P. Hårdhammar, I. Sjögren, J. Stewart,
P. Grimfjärd, J. Jensen, M. Aasa, L. Robertsson, P. Lindroos, J. Haupt,
H. Wikström, A. Ulvenstam, P. Bhiladvala, B. Lindvall, A. Lundin, T. Tödt,
D. Ioanes, T. Råmunddal, T. Kellerth, L. Zagozdzon, M. Götberg, J. Andersson,
O. Angerås, O. Östlund, B. Lagerqvist, C. Held, L. Wallentin, F. Scherstén,
P. Eriksson, S. Koul, and S. James

- Randomized
- Multicenter
 - Registry-based SWEDEHEART registry
- Target population: patients undergoing PCI for STEMI/NSTEMI
 - Co-treatment with potent P2Y12 inhibitor (ticagrelor/prasugrel/cangrelor)
 - Without planned used of GPIIb/IIIa inhibitor
- Randomized to
 - Bivalirudin (0.75 mg bolus followed by 1.75mg/kg/hour)
 - Heparin only (70-100U/kg)
- Primary endpoint: death, MI or major bleeding (BARC≥2) within 180 days
- 6006 patients with STEMI/NSTEMI
 - 97.5% statistical power to detect a hazard ratio of 0.75 in favor of bivalirudin

Erlinge et al, N Engl J Med. 2017 21;337(12):1132-1142.

No significant difference between bivalirudin and heparin

Erlinge et al, N Engl J Med. 2017 21;337(12):1132-1142.

VRF

Subgroup	Bivalirudin	Heparin	Hazard Ratio (95% CI)	P Value
	no. of events/total	no. of patients (%)			
Overall	369/3004 (12.3)	383/3002 (12.8)		0.96 (0.83-1.10)	0.54
Type of myocardial infarction	1				0.97
NSTEMI	182/1503 (12.1)	187/1498 (12.5)		0.96 (0.78-1.18)	
STEMI	187/1501 (12.5)	196/1504 (13.0)	a 📕 👘	0.95 (0.78-1.17)	
Sex					0.05
Female	105/771 (13.6)	140/821 (17.1)		0.78 (0.60-1.00)	
Male	263/2229 (11.8)	243/2177 (11.2)		1.06 (0.89-1.26)	
Age					0.70
>65 yr	289/1819 (15.9)	299/1852 (16.1)		0.97 (0.83-1.15)	
s≤65 yr	79/1181 (6.7)	84/1146 (7.3)		0.91 (0.67-1.24)	
Diabetes mellitus					0.82
Yes	74/491 (15.1)	82/508 (16.1)		0.93 (0.68-1.27)	
No	293/2502 (11.7)	299/2482 (12.0)		0.97 (0.82-1.13)	
Renal failure					0.16
Yes	101/450 (22.4)	95/477 (19.9)		1.13 (0.85-1.50)	
No	258/2511 (10.3)	283/2484 (11.4)	a	0.89 (0.75-1.06)	
Smoker					0.97
Yes	81/716 (11.3)	85/710 (12.0)		0.95 (0.70-1.29)	
No	277/2209 (12.5)	290/2205 (13.2)		0.94 (0.80-1.11)	
Weight					0.38
<60 kg	28/139 (20.1)	27/156 (17.3)		1.19 (0.70-2.02)	
≥60 kg	335/2847 (11.8)	355/2829 (12.5)		0.93 (0.80-1.08)	
Previous myocardial infarction	on				0.55
Yes	61/490 (12.4)	69/484 (14.3)		0.86 (0.61-1.22)	
No	300/2474 (12.1)	307/2467 (12.4)		0.97 (0.83-1.13)	
Previous PCI					0.39
Yes	60/456 (13.2)	66/426 (15.5)		0.83 (0.58-1.17)	
No	308/2544 (12.1)	317/2572 (12.3)		0.98 (0.84-1.14)	
Target vessel					0.50
Left coronary artery	221/1807 (12.2)	248/1848 (13.4)	<u>10 mars</u>	0.90 (0.75-1.08)	
Right coronary artery	97/807 (12.0)	96/806 (11.9)		1.01 (0.76-1.34)	
Thrombus grade					0.91
0-3	313/2589 (12.1)	328/2587 (12.7)		0.94 (0.81-1.10)	
4 or 5	52/398 (13.1)	55/405 (13.6)		0.97 (0.66-1.41)	
Access site for PCI					0.89
Femoral	65/290 (22.4)	64/280 (22.9)		0.97 (0.69-1.37)	
Radial	303/2708 (11.2)	319/2716 (11.7)		0.95 (0.81-1.11)	
Time from administration of P2Y ₁₂ inhibitor to PC	L				0.62
<1 hr	144/1148 (12.5)	161/1129 (14.3)		0.87 (0.69-1.09)	
1–2 hr	73/588 (12.4)	75/604 (12.4)	2 . III. (2.	1.00 (0.72-1.37)	
>2 hr	146/1252 (11.7)	144/1256 (11.5)		1.01 (0.80-1.27)	
TIMI flow grade before PCI					0.53
0	151/1178 (12.8)	133/1114 (11.9)		1.08 (0.86-1.37)	
1	28/222 (12.6)	33/220 (15.0)		0.81 (0.49-1.34)	
2	58/483 (12.0)	61/487 (12.5)		0.94 (0.66-1.35)	
3	130/1113 (11.7)	156/1178 (13.2)	20 <u>0</u>	0.87 (0.69-1.09)	
Thrombus aspiration					0.73
Yes	15/169 (8.9)	16/153 (10.5)		- 0.85 (0.42-1.71)	
No	353/2831 (12.5)	367/2845 (12.9)		0.96 (0.83-1.11)	
Maximum ACT < median AC	T	s-an taka kon Grief M			0.84
Yes	111/926 (12.0)	158/1238 (12.8)		0.93 (0.73-1.18)	
No	139/1183 (11.7)	160/1239 (12.9)		0.90 (0.72-1.13)	

CARDIOVASCULAR SUMMIT

 Obs
 <thObs</th>
 <thObs</th>
 <thObs</th>

Major bleeding-pooled analysis

Church		lirudin		eparin	Disk Datis		0.5% 01	Weight	
Study	Events	lotal	Events	lotal	Risk Ratio	RR	95%-CI	(fixed)	(random)
HORIZONS-AMI-2008	55	1800	91	1802	- <u>m</u> ?-	0.61	[0.44; 0.84]	21.4%	20.4%
EUROMAX-2013	14	1089	23	1109		0.62	[0.32; 1.20]	5.4%	10.1%
BRAVE-4-2014	7	269	8	275		0.89	[0.33; 2.43]	1.9%	5.4%
HEAT-PPCI-2014	32	905	28	907	<u>á</u> m	1.15	[0.70; 1.89]	6.6%	14.2%
BRIGHT-2015	4	735	26	1459 -		0.31	[0.11; 0.87]	4.1%	5.0%
MATRIX-2015	49	3610	88	3603	- <u>B</u>	0.56	[0.39; 0.79]	20.8%	19.6%
VALIDATE-SWEDEHEART-2017	152	3004	169	3002	澤	0.90	[0.73; 1.11]	39.9%	25.2%
Fixed effect model		11412		12157	•	0.74	[0.64; 0.86]	100.0%	
Random effects model					\$	0.71	[0.55; 0.92]		100.0%
Heterogeneity: $I^2 = 55\%$, $\tau^2 = 0.0563$	B, p = 0.04						177 I I I I I I I I I I I I I I I I I I		
					0.2 0.5 1 2 5				
				Biv	alirudin better Heparin bette	r)			

NACE: pooled analysis from 7 AMI trials

	Biva	alirudin	. P	leparin				Weight	t Weight		Exc	ludi	ng I	HEA	AT-PPCI trial				
Study		Total E				RR			(random)										
BRAVE 42014	42	269	40	275		1.07	[0.72; 1.60])] 3.1%	9.5%		Bival	lirudin	H	leparin				Weight	t Weight
MATRIX2015	410		450	200 S. 200 S.			[0.80; 1.03]	•		Study	Events	Total Ev	vents	Total	Risk Ratio	RR	95%-CI	(fixed)	(random)
HEAT-PPCI2014	111	905	80	907		1.39 [[1.06; 1.83]	8] 6.2%	13.2%	l					and and a second				ALC: NOT A
HORIZONS-AMI2008	166	5 1800	218	1802		0.76 /	[0.63; 0.92]	2] 16.8%	15.9%	HORIZONS-AMI-2008	166	1800	218	1802		0.76	[0.63; 0.92]	18.0%	19.0%
BRIGHT2015	65	735	220	1459 -		0.59 /	[0.45; 0.76]	6] 11.4%	13.5%							100000	*168550.C*	•0 - 18 (SOM)	No. 1. 1993
EUROMAX2013	85	5 1089	118	1109		0.73 /	[0.56; 0.96]	j 9.0%	13.4%	EUROMAX-2013	11.22	12.30		1109	<u>.</u>	0.000	[0.56; 0.96]	8. 980 CC	
VALIDATE-SWEDEHEART2017	7 216	3004	241	3002			[0.75; 1.07]		16.4%	BRAVE-4-2014	42	269	40	275		1.07	[0.72; 1.60]] 3.3%	8.6%
	11 Saraka	1.125344	3,9004	10912042		40000-0	BHEN ONE	6 TRINORS	1 AG184474 AF	BRIGHT-2015	65	735	220	1459 -		0.59	[0.45; 0.76]	12.1%	6 14.4%
Fixed effect model		11412	í.	12157	•	0.86 [/	[0.80; 0.93]	100.0%	<u>í</u> 2 4	MATRIX-2015	410	3610	450	3603	1	0.91	[0.80; 1.03]	37.1%	23.8%
Random effects model Heterogeneity: 1 ² = 76%, t ² = 0.0373,	s o < 0.01			25243444		0.87 (r	[0.73; 1.03]	ij -	100.0%	VALIDATE-SWEDEHEART-2017	216	3004	241	3002	9 <u>10</u> 100 1	- 0.00000	[0.75; 1.07]	5 CO. CO.	
indergenergenergenergenergenergenergenerg	1				0.5 1 2 ivalirudin Better Heparin Bette	2 .ter				Fixed effect model Random effects model		10507	Î	11250	-		[0.77; 0.90] [0.70; 0.93]	 O O O O O O O O O 	- - 100.0%
										Heterogeneity: $l^2 = 61\%$, $\tau^2 = 0.0169$	9, p = 0.03					and t	and and	1 590	I WANT IN

Bivalirudin better Heparin better

2

0.5

CARDIOVASCULAR SUMMIT

Ge Z, Chandrasekhar J, Mehran R, CVIA 2018, in press

RE-DUAL PCI trial

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

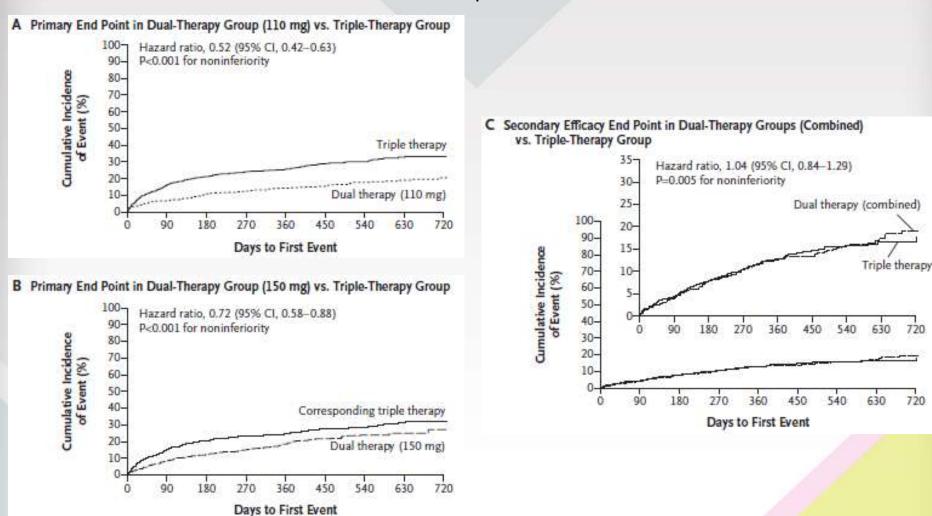
OCTOBER 19, 2017

VOL 377 NO. 16

Dual Antithrombotic Therapy with Dabigatran after PCI in Atrial Fibrillation

Christopher P. Cannon, M.D., Deepak L. Bhatt, M.D., M.P.H., Jonas Oldgren, M.D., Ph.D., Gregory Y.H. Lip, M.D., Stephen G. Ellis, M.D., Takeshi Kimura, M.D., Michael Maeng, M.D., Ph.D., Bela Merkely, M.D., Uwe Zeymer, M.D., Savion Gropper, M.D., Ph.D., Matias Nordaby, M.D., Eva Kleine, M.Sc., Ruth Harper, Ph.D., Jenny Manassie, B.Med.Sc., James L. Januzzi, M.D., Jurrien M. ten Berg, M.D., Ph.D., P. Gabriel Steg, M.D., and Stefan H. Hohnloser, M.D., for the RE-DUAL PCI Steering Committee and Investigators*

Screening	Study Treatment	Follow up
	Dabigatran etexilate 110mg b.i.d. + clopidogrel or ticagrelor ¹	
	Dabigatran etexilate 150mg b.i.d. + clopidogrel or ticagrelor ¹	
Informed	Warfarin [INR 2.0-3.0] + clopidogrel or ticagrelor ¹ + ASA ²	
consent	 Minimum treatment duration 6 months 	One month


- Primary composite endpoint: major bleeding (ISTH)
 - clinically relevant nonmajor bleeding
- Secondary composite endpoint ٠
 - Thromboembolic events

Death 0

Cannon et al, N Engl J Med. 2017 19;377(16):1513-1524

Mean follow-up : 14 months

Dual antiplatelet therapy with dabigatran is associated with less bleeding than triple therapy with VKA

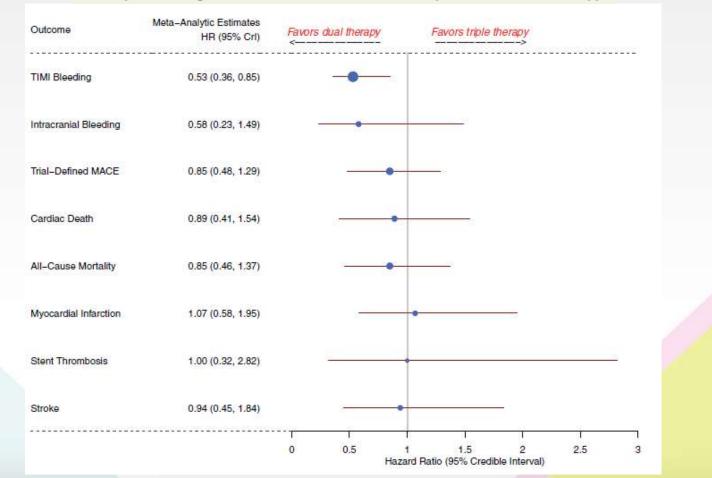
Cannon et al, N Engl J Med. 2017 19;377(16):1513-1524.

Table 2. Safety End Points.*

End Point	Dual Therapy with Dabigatran, 110 mg (N = 981)	Triple Therapy with Warfarin (N=981)	Hazard Ratio (95% CI)	P Value†	Dual Therapy with Dabigatran, 150 mg (N=763)	Corresponding Triple Therapy with Warfarin (N=764)	Hazard Ratio (95% CI)	P Value;
	no.	(%)			no.	(%)		
Primary end point: ISTH major or clin- ically relevant nonmajor bleeding	151 (15.4)	264 (26.9)	0.52 (0.42-0.63)	<0.001 (<0.001 for noninferiority)	154 (20.2)	196 (25.7)	0.72 (0.58–0.88)	0.002 (<0.001 for noninferiority
ISTH major bleeding	49 (5.0)	90 (9.2)	0.52 (0.37-0.74)	<0.001	43 (5.6)	64 (8.4)	0.64 (0.43-0.94)	0.02
Total bleeding	266 (27.1)	421 (42.9)	0.54 (0.46-0.63)	< 0.001	254 (33.3)	316 (41.4)	0.72 (0.61-0.84)	< 0.001
Intracranial hemorrhage	3 (0.3)	10 (1.0)	0.30 (0.08-1.07)	0.06	1 (0.1)	8 (1.0)	0.12 (0.02-0.98)	0.047
TIMI major bleeding	14 (1.4)	37 (3.8)	0.37 (0.20-0.68)	0.002	16 (2.1)	30 (3.9)	0.51 (0.28-0.93)	0.03
TIMI major or minor bleeding	29 (3.0)	69 (7.0)	0.41 (0.26-0.63)	<0.001	27 (3.5)	48 (6.3)	0.53 (0.33-0.85)	0.009

Table 3. Efficacy End Points.*

End Point			Dabigatran (arapy with Wa				abigatran (11 y with Warfar			Dual Therapy with Dabigatran (150 mg) vs. Triple Therapy with Warfarin		
	Combined Dual- Therapy Groups (N = 1744)	Triple- Therapy Group (N=981)	Hazard Ratio (95% CI)	P Value†	110-mg Dual- Therapy Group (N=981)	Triple- Therapy Group (N=981)	Hazard Ratio (95% CI)	P Value†	150-mg Dual- Therapy Group (N = 763)	Corresponding Triple-Therapy Group (N=764)	Hazard Ratio (95% CI)	P Value
	no.	(%)			no.	(%)			'n	10. (%)		
Composite efficacy end point: thromboembolic events, death, or unplanned revas- cularization	239 (13.7)	131 (13.4)	1.04 (0.84–1.29)	0.74 (0.005 for noninferiority)	149 (15.2)	131 (13.4)	1.13 (0.90–1.43)	0.30	90 (11.8)	98 (12.8)	0.89 (0.67–1.19)	0.44
Thromboembolic events or death	168 (9.6)	83 (8.5)	1.17 (0.90–1.53)	0.25 (0.11 for noninferiority)	108 (11.0)	83 (8.5)	1.30 (0.98–1.73)	0.07	60 (7.9)	60 (7.9)	0.97 (0.68–1.39)	0.88
Death					55 (5.6)	48 (4.9)	1.12 (0.76–1.65)	0.56	30 (3.9)	35 (4.6)	0.83 (0.51–1.34)	0.44
Myocardial infarction					44 (4.5)	29 (3.0)	1.51 (0.94–2.41)	0.09	26 (3.4)	22 (2.9)	1.16 (0.66–2.04)	0.61
Stroke					17 (1.7)	13 (1.3)	1.30 (0.63–2.67)	0.48	9 (1.2)	8 (1.0)	1.09 (0.42–2.83)	0.85
Definite stent thrombosis					15 (1.5)	8 (0.8)	1.86 (0.79–4.40)	0.15	7 (0.9)	7 (0.9)	0.99 (0.35–2.81)	0.98
D 7018												1


Cannon et al, N Engl J Med. 2017 19;377(16):1513-1524.

Safety and efficacy of dual vs. triple antithrombotic therapy in patients with atrial fibrillation following percutaneous coronary intervention: a systematic review and meta-analysis of randomized clinical trials

						Es	an Society de		rt Journal (20 rheartj/ehy16	
WOEST		ISAR-TRI	LE ¹⁸	PIONEER A	F-PCI ¹¹	RE-DUAL P	C)*5		Combined	
DAT (n = 279)	TAT (n = 284)	DAT (n = 307)	TAT (n = 307)	DAT (a = 709)	TAT (n = 706)	DAT (n = 981) Dabigatran 110 mg	DAT (n = 763) Dabigatran 150 mg	TAT (n = 961)	DAT (n= 3039)	TAT (n= 2278)

Harsh B. Golwala¹, Christopher P. Cannon^{1,2}, Ph. Gabriel Steg³, Gheorghe Doros^{2,4}, Arman Qamar¹, Stephen G. Ellis⁵, Jonas Oldgren⁶, Jurrien M. ten Berg⁷, Takeshi Kimura⁸, Stefan H. Hohnloser⁹, Gregory Y. H. Lip¹⁰, and Deepak L. Bhatt¹*

Summary of bleeding and ischaemic risks for dual versus triple antithrombotic therapy.

Golwala et al Eur Heart J. 2018 Apr 13

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MAY 11, 2017

VOL. 376 NO. 19

Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PCI

M. Götberg, E.H. Christiansen, I.J. Gudmundsdottir, L. Sandhall, M. Danielewicz, L. Jakobsen, S.-E. Olsson, P. Öhagen, H. Olsson, E. Omerovic, F. Calais, P. Lindroos, M. Maeng, T. Tödt, D. Venetsanos, S.K. James, A. Käregren, M. Nilsson, J. Carlsson, D. Hauer, J. Jensen, A.-C. Karlsson, G. Panayi, D. Erlinge, and O. Fröbert, for the iFR-SWEDEHEART Investigators*

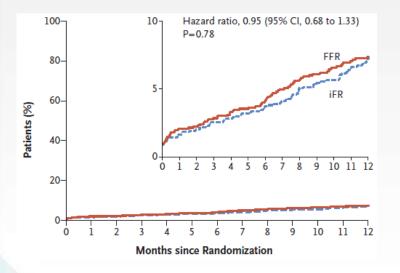
Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI

J.E. Davies, S. Sen, H.-M. Dehbi, R. Al-Lamee, R. Petraco, S.S. Nijjer, R. Bhindi,
S.J. Lehman, D. Walters, J. Sapontis, L. Janssens, C.J. Vrints, A. Khashaba,
M. Laine, E. Van Belle, F. Krackhardt, W. Bojara, O. Going, T. Härle, C. Indolfi,
G. Niccoli, F. Ribichini, N. Tanaka, H. Yokoi, H. Takashima, Y. Kikuta, A. Erglis,
H. Vinhas, P. Canas Silva, S.B. Baptista, A. Alghamdi, F. Hellig, B.-K. Koo,
C.-W. Nam, E.-S. Shin, J.-H. Doh, S. Brugaletta, E. Alegria-Barrero, M. Meuwissen,
J.J. Piek, N. van Royen, M. Sezer, C. Di Mario, R.T. Gerber, I.S. Malik,
A.S.P. Sharp, S. Talwar, K. Tang, H. Samady, J. Altman, A.H. Seto, J. Singh,
A. Jeremias, H. Matsuo, R.K. Kharbanda, M.R. Patel, P. Serruys, and J. Escaned

In both trials

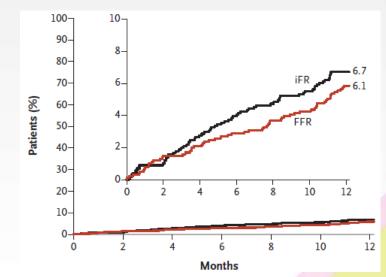
All-comers undergoing PCI with at least on native artery with 40-70% stenosis

iFR threshold : 0.89 vs. FFR (adenosine) threshold 0.8


One-year follow-up for the composite of death, MI or unplanned revascularization.

Goteborg et al, N Engl J Med. 2017 May 11;376(19):1813-1823.

Götberg et al


- 2037 patients, 62% stable angina
- No difference for the primary endpoint p < 0.001 for non-inferiority

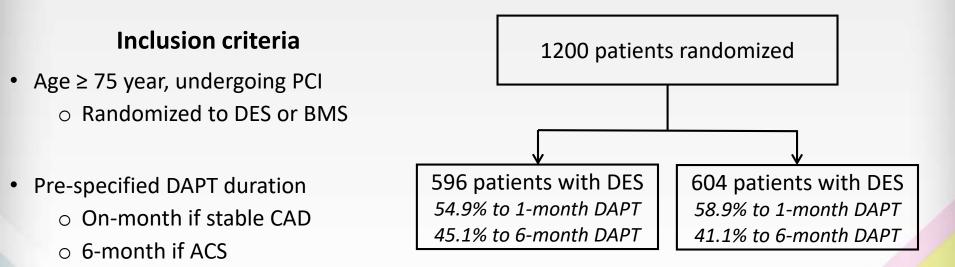
• More frequent periprocedural chest discomfort with FFR

Davies et al

- 2492 patients, 80.2% stable angina
- No difference for the primary endpoint p =0.007 for non-inferiority

• More frequent heart-rhythm disturbance With FFR

iFR (threshold at 0.89) is non inferior to FFR



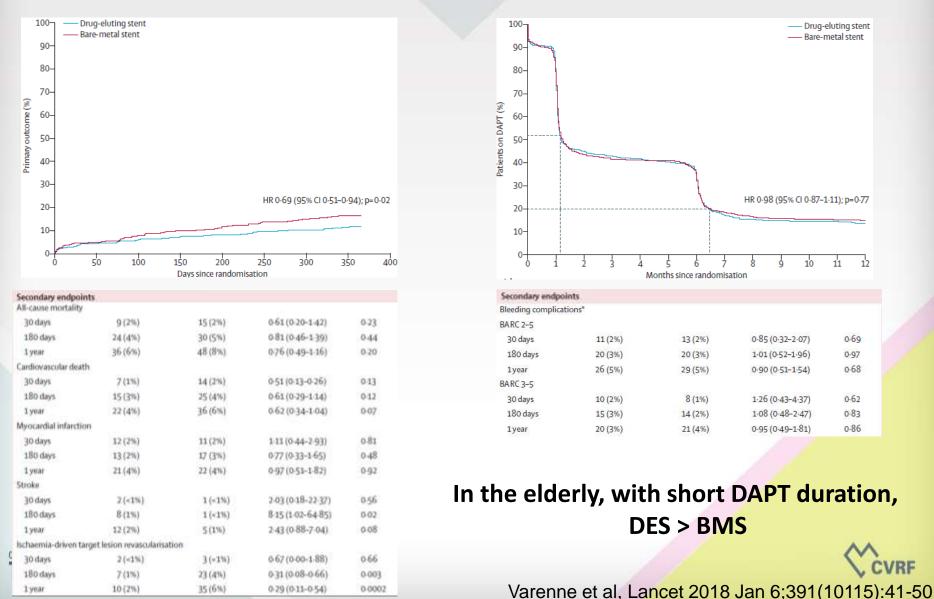
Goteborg et al, N Engl J Med. 2017 May 11;376(19):1813-1823. Davies et al, N Engl J Med. 2017 May 11;376(19):1824-1834.

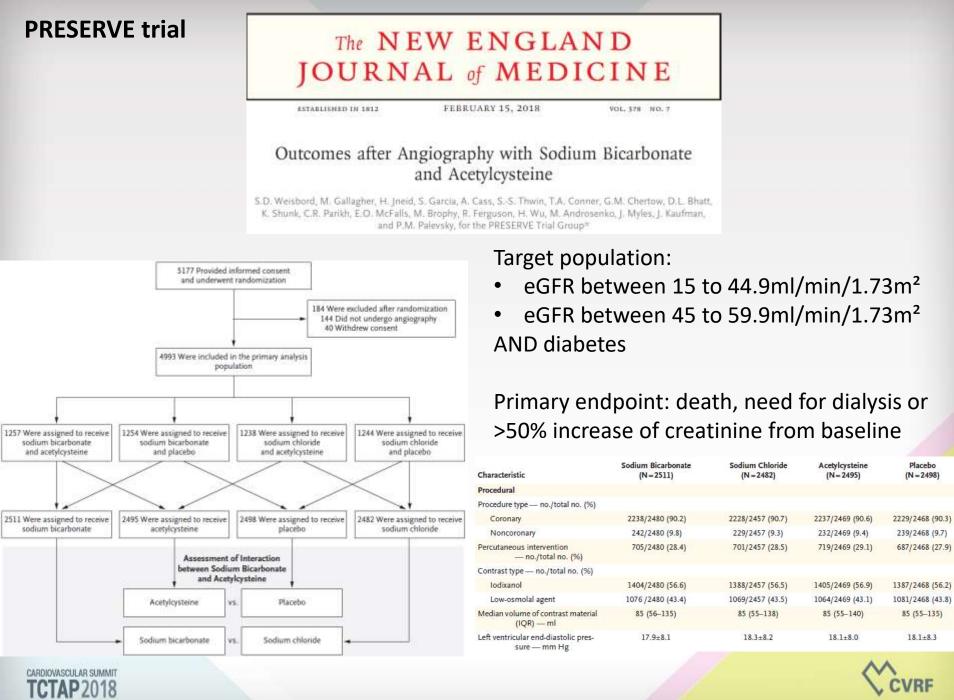
SENIOR trial

Drug-eluting stents in elderly patients with coronary artery disease (SENIOR): a randomised single-blind trial

Olivier Varenne, Stéphane Cook, Georgios Sideris, Sasko Kedev, Thomas Cuisset, Didier Carrié, Thomas Hovasse, Philippe Garot, Rami El Mahmoud, Christian Spaulding, Gérard Helft, José F Diaz Fernandez, Salvatore Brugaletta, Eduardo Pinar-Bermudez, Josepa Mauri Ferre, Philippe Commeau, Emmanuel Teiger, Kris Bogaerts, Manel Sabate, Marie-Claude Morice, Peter R Sinnaeve, for the SENIOR investigators

Primary endpoint


- MACCE: Death, MI, stroke or ischemia-driven target lesion revascularization
- Within on-year of index PCI



Varenne et al, Lancet 2018 Jan 6;391(10115):41-50

SENIOR trial

- Mean age 8.4 ± 4.3 years
- Clinical indication for PCI: ACS in 45.3% of the patients

Weisbord et al, N Engl J Med. 2018 Feb 15;378(7):603-614.

No difference between Sodium chloride and Sodium bicarbonate No impact of Acetylsteine

Outcome	Sodium Bicarbonate (N=2511)	Sodium Chloride (N=2482)	Odds Ratio (95% CI)	P Value	Acetylcysteine (N=2495)	Placebo (N=2498)	Odds Ratio (95% CI)	P Value
	no. of po	atients (%)			no. of patie	ents (%)		
Primary end point*	110 (4.4)	116 (4.7)	0.93 (0.72–1.22)	0.62	114 (4.6)	112 (4.5)	1.02 (0.78–1.33)	0.88
Secondary end points								
Contrast-associated acute kidney injury†	239 (9.5)	206 (8.3)	1.16 (0.96–1.41)	0.13	228 (9.1)	217 (8.7)	1.06 (0.87–1.28)	0.58
Death by 90 days	60 (2.4)	68 (2.7)	0.87 (0.61–1.24)	0.43	67 (2.7)	61 (2.4)	1.10 (0.78–1.57)	0.59
Need for dialysis by 90 days	32 (1.3)	29 (1.2)	1.09 (0.65–1.81)	0.73	30 (1.2)	31 (1.2)	0.97 (0.58–1.60)	0.90
Persistent kidney impairment by 90 days	28 (1.1)	25 (1.0)	1.10 (0.64–1.91)	0.71	26 (1.0)	27 (1.1)	0.96 (0.56–1.66)	0.89
Hospitalization with acute coronary syn- drome, heart failure, or stroke by 90 days	272 (10.8)	251 (10.1)	1.08 (0.90–1.29)	0.40	244 (9.8)	279 (11.2)	0.86 (0.71–1.04)	0.11
All-cause hospitalization by 90 days	1071 (42.7)	1052 (42.4)	1.01 (0.90–1.13)	0.85	1069 (42.8)	1054 (42.2)	1.03 (0.91–1.15)	0.64

Weisbord et al, N Engl J Med. 2018 Feb 15;378(7):603-614. doi:10.1059/NEJMoa1710933.

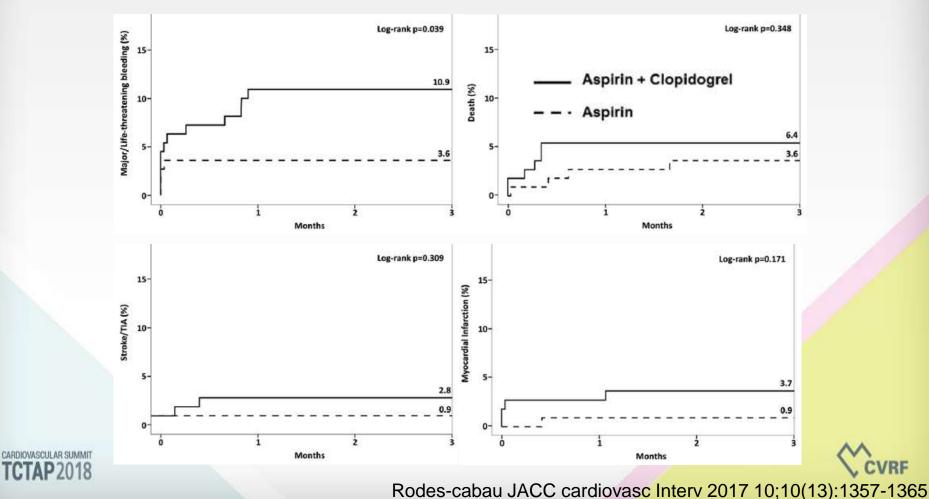
Interventional pharmacology: a year in-review

Percutaneous structural intervention

ARTE trial

ΔP

Aspirin Versus Aspirin Plus Clopidogrel as () Antithrombotic Treatment Following **Transcatheter Aortic Valve Replacement** With a Balloon-Expandable Valve

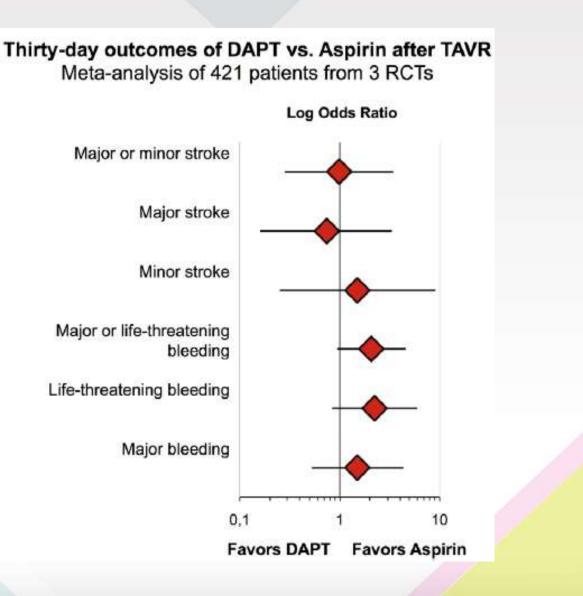

The ARTE (Aspirin Versus Aspirin + Clopidogrel Following Transcatheter Aortic Valve Implantation) Randomized Clinical Trial

Josep Rodés-Cabau, MD," Jean-Bernard Masson, MD," Robert C. Weish, MD," Bruno Garcia dei Blanco, MD," Marc Pelletier, MD," John G. Webb, MD," Faisal Al-Qooft, MD," Philippe Généreux, MD," Gabriel Maluenda, MD, Martin Thoenes, MD, PuD,1 Jean-Michel Paradis, MD,1 Chekrallah Chamandi, MD,1 Vicenç Serra, MD,1 Eric Dumont, MD," Mélanie Côté, MSc1

JACC: CARDIOVASCULAR INTERVENTIONS © 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

222 patients randomized after successful TAVI to

- 3 months SAPT
- or
- 3 months DAPT •



Antithrombotic Therapy for Prevention of Cerebral Thromboembolic Events After Transcatheter Aortic Valve Replacement

Evolving Paradigms and Ongoing Directions*

Davide Capodanno, MD, PrD," Dominick J. Angioliilo, MD, PrD³ EDITORIAL COMMENT

JACC: CARDIOVASCULAR INTERVENTIONS © 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

Capodanno JACC cardiovasc Interv 2017 10;10(13):1366-1369

ĊVRF

2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease

Recommendations for Antithrombotic Therapy for Patients with Prosthetic Heart Valves

See Online Data Supplement 6.

Anticoagulation with a VKA to achieve an INR of 2.5 may be reasonable for at least 3 months after TAVR in patients at low risk of bleeding (203,210,211). NEW: Studies have shown that valve thrombosis may develop in patients after TAVR, as assessed by multidetector computerized tomographic scanning. This valve thrombosis occurs in patients who received antiplatelet therapy alone but not in patients who were treated with VKA.

2017 ESC/EACTS Guidelines for the management of valvular heart disease

Indications for antithrombotic therapy in patients with a prosthetic heart valve or valve repair

Bioprostheses

Single antiplatelet therapy may be considered after TAVI in the case of high bleeding risk.

IIb C

CARDIOVASCULAR SUMMIT

Baumgartner et al Eur. Heart J.2017 Sep 21;38(36):2739-279 Nishimura et al J Am Coll Cardiol. 2017 Jul 11;70(2):252-289

CLOSE trial

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

SEPTEMBER 14, 2017

VOL. 377 NO. 11

Patent Foramen Ovale Closure or Anticoagulation vs. Antiplatelets after Stroke

J.-L. Mas, G. Derumeaux, B. Guillon, E. Massardier, H. Hosseini, L. Mechtouff, C. Arquizan, Y. Béjot, F. Vuillier, O. Detante, C. Guidoux, S. Canaple, C. Vaduva, N. Dequatre-Ponchelle, I. Sibon, P. Garnier, A. Ferrier, S. Timsit, E. Robinet-Borgomano, D. Sablot, J.-C. Lacour, M. Zuber, P. Favrole, J.-F. Pinel, M. Apoil, P. Reiner, C. Lefebvre, P. Guérin, C. Piot, R. Rossi, J.-L. Dubois-Randé, J.-C. Eicher, N. Meneveau, J.-R. Lusson, B. Bertrand, J.-M. Schleich, F. Godart, J.-B. Thambo, L. Leborgne, P. Michel, L. Pierard, G. Turc, M. Barthelet, A. Charles-Nelson, C. Weimar, T. Moulin, J.-M. Juliard, and G. Chatellier, for the CLOSE Investigators*

- 663 patients with cryptogenic stroke and PFO with atrial septal aneurysm or large interatrial shunt
- Randomized to
 - Antiplatelet therapy (Aspirin / Clopidogrel / Aspirin and dypiridamol)
 - Oral anticoagulant: VKA (INR:2-3) or NOACs
 - PFO percutaneous closure and antiplatelet
- Primary : fatal or non-fatal stroke recurrence

Mas et al, N Engl J Med. 2017 14;337(11):1011-1021

Mean follow-up 5.3 ± 2.0 years

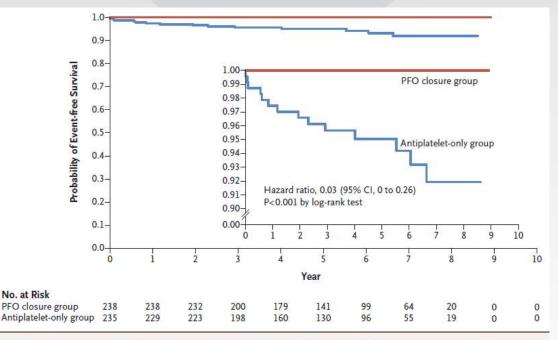


Figure 2. Kaplan–Meier Cumulative Estimates of Probability of Stroke in the PFO Closure Group versus the Antiplatelet-Only Group.

PFO + antiplatelet > antiplatelet therapy only for the primary endpoint

No significant difference between PFO + antiplatelet vs. oral anticoagulant

Table 2. Efficacy Outcomes.*

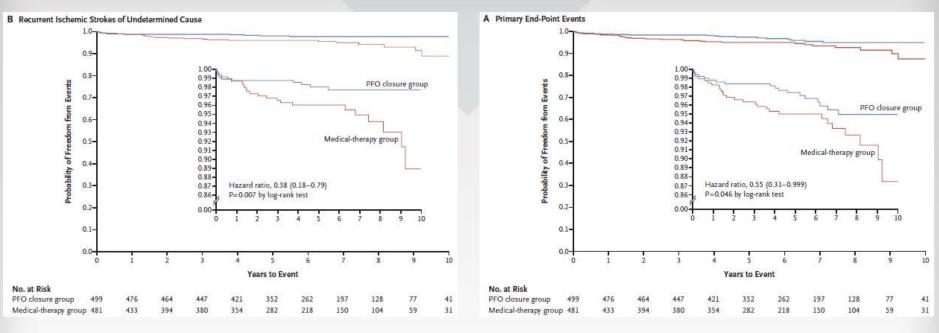
Outcome		Randomizatio	on Groups 1 and 2		Randomization Groups 1 and 3				
	PFO Closure Group (N-238)	Antiplatelet-Only Group (N-235)	Hazard Ratio (95% CI)†	P Value	Anticoagulant Group (N-187)	Antiplatelet-Only Group (N-174)	Hazard Ratio (95% CI)‡		
Primary efficacy outcome									
Stroke in the intention-to-treat popula- tion — no. of patients	0	14§	0.03 (0.00–0.26)	<0.001	3¶	7g	0.44 (0.11–1.48)		
Stroke in the per-protocol population — no./total no. of patients	0/217	14/223§	0.04 (0.00-0.27)	<0.001	2/143¶	7/164§	0.37 (0.07-1.38)		

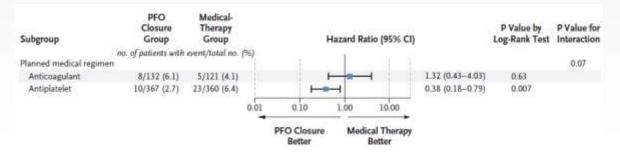
RESPECT trial

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Long-Term Outcomes of Patent Foramen Ovale Closure or Medical Therapy after Stroke


Jeffrey L. Saver, M.D., John D. Carroll, M.D., David E. Thaler, M.D., Ph.D., Richard W. Smalling, M.D., Ph.D., Lee A. MacDonald, M.D., David S. Marks, M.D., and David L. Tirschwell, M.D., for the RESPECT Investigators*


- 980 patients with cryptogenic stroke and PFO
- Randomized to
 - PFO percutaneous closure and antiplatelet
 - Medical therapy only (Aspirin or Clopidogrel or Warfarin or Aspirin + Dypiridamol)
- Primary endpoint: fatal or non-fatal stroke recurrence or early death

cardiovascular summit TCTAP2018

Saver et al, N Engl J Med. 2017 14;337(11):1022-1032

Median follow-up 5.9 years (IQR 4.2 to 8.0) years

PFO closure > medical therapy overall

- PFO closure > antiplatelet only
- No difference between PFO closure and anticoagulant

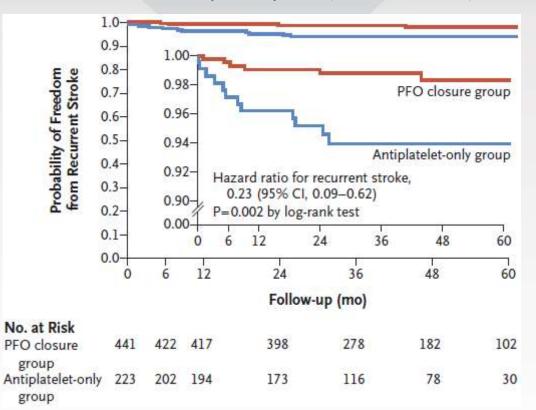
Gore REDUCE trial

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Patent Foramen Ovale Closure or Antiplatelet Therapy for Cryptogenic Stroke

Lars Søndergaard, M.D., Scott E. Kasner, M.D., John F. Rhodes, M.D., Grethe Andersen, M.D., D.M.Sc., Helle K. Iversen, M.D., D.M.Sc., Jens E. Nielsen-Kudsk, M.D., D.M.Sc., Magnus Settergren, M.D., Ph.D., Christina Sjöstrand, M.D., Ph.D., Risto O. Roine, M.D., David Hildick-Smith, M.D., J. David Spence, M.D., and Lars Thomassen, M.D., for the Gore REDUCE Clinical Study Investigators*


- 664 patients with cryptogenic stroke and PFO
- Randomized to

OVASCULAR SUMMIT

- Antiplatelet therapy (Aspirin / Clopidogrel / Aspirin and dypiridamol)
- PFO percutaneous closure and antiplatelet
- Systematic MRI evaluation at baseline and 24 month
- Co-Primary endpoints:
 - Freedom from ischemic stroke during follow-up
 - 24-month incidence of new brain infarction (including silent infarction)

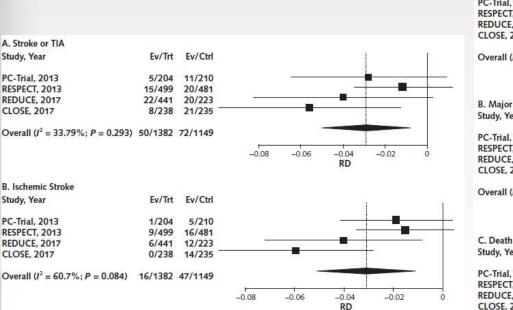
Søndergaard et al, N Engl J Med. 2017 14;337(11):1033-1042

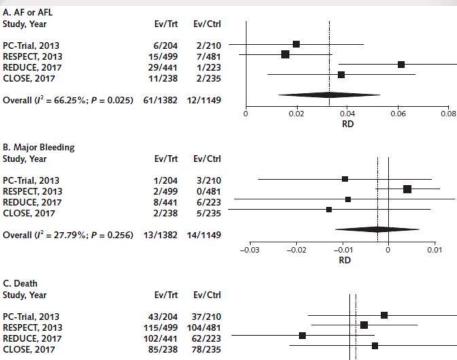
Median follow-up: 3.2 years (IQR 2.2 to 4.8)

PFO closure and antiplatelet > Antiplatelet only

	End Point	PFO Closure Group	Antiplatelet-Only Group	Effect Size	P Value
		no. of patien	ts/total no. (%)		
	Clinical ischemic stroke†	6/441 (1.4)	12/223 (5.4)	0.23 (0.09-0.62)‡	0.002 <u></u> ∫
	New brain infarction¶	22/383 (5.7)	20/177 (11.3)	0.51 (0.29-0.91)	0.04**
	Recurrent clinical ischemic stroke	5/383 (1.3)	12/177 (6.8)	0.19 (0.07-0.54)	0.005**
AR SUN	Silent brain infarction only	17/383 (4.4)	8/177 (4.5)	0.98 (0.43–2.23)	0.97**

CARDIOVASCULAR TCTAP


Annals of Internal Medicine


REVIEW

Percutaneous Closure Versus Medical Treatment in Stroke Patients With Patent Foramen Ovale

A Systematic Review and Meta-analysis

Salvatore De Rosa, MD, PhD; Horst Sievert, MD; Jolanda Sabatino, MD; Alberto Polimeni, MD; Sabato Sorrentino, MD, PhD; and Ciro Indolfi, MD

Overall (I² = 31.19%; P = 0.397) 345/1382 281/1149

CVRF

-0.05

ò

RD

0.05

0.1

De Rosa et al, Ann Inter Med. 2018 6;168(5):343-350

-0.1

Device-Related Thrombosis After Percutaneous Left Atrial Appendage Occlusion for Atrial Fibrillation

Laurent Fauchier, MD,^a Alexandre Cinaud, MD,^a François Brigadeau, MD,^b Antoine Lepillier, MD,^c Bertrand Pierre, MD,^a Selim Abbey, MD,^d Marjaneh Fatemi, MD,^e Frederic Franceschi, MD,^f Paul Guedeney, MD,^g Peggy Jacon, MD,^h Olivier Paziaud, MD,^c Sandrine Venier, MD,^h Jean Claude Deharo, MD,^f Daniel Gras, MD,^d Didier Klug, MD,^b Jacques Mansourati, MD,^e Gilles Montalescot, MD,^g Olivier Piot, MD,^c Pascal Defaye, MD^h

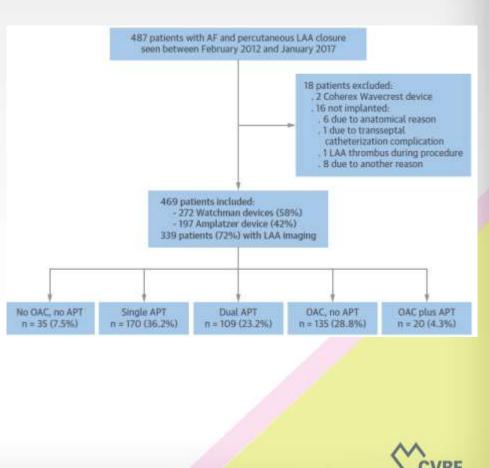
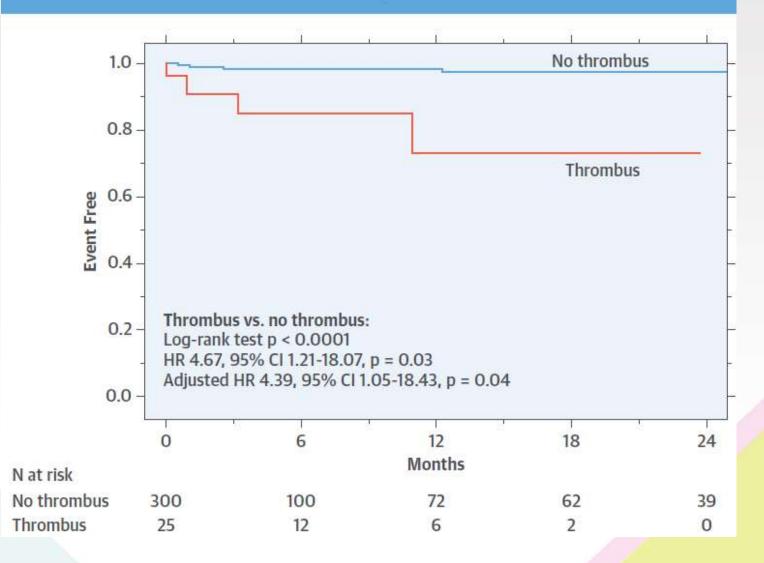

- Mean Follow-up 13 ± 13 months
- Thrombus on device was diagnosed with <u>8.3%</u> of the patients (TEE or CT scan)
- Mean time to thrombus detection was 3.1 ± 2.6 months

TABLE 4 Multivariable Analysis (Cox Regression Model) for Predictors of Thrombus Formation on the Device and Predictors of Stroke and TIA*

	HR (95% CI)	p Value
Thrombus formation on the de	vice	
Age (per 1-yr increase)	1.07 (1.01-1.14)	0.02
Previous ischemic stroke	3.68 (1.17-11.62)	0.03
CHA2DS2-VASc score	0.69 (0.44-1.06)	0.09
APT at discharge	0.35 (0.12-1.04)	0.06
Dual APT at discharge	0.10 (0.01-0.76)	0.03
OAC at discharge	0.26 (0.09-0.77)	0.02
Strokes or TIAs		
Vascular disease	5.03 (1.39-18.23)	0.01
Thrombus on the device	4.39 (1.05-18.43)	0.04
CHA2DS2-VASc score	0.71 (0.47-1.06)	0.09
APT at discharge	1.35 (0.20-9.06)	0.75
Dual APT at discharge	0.6 <mark>4</mark> (0.15-2.69)	0.54
OAC at discharge	0.39 (0.06-2.61)	0.33


JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2018 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

Real-world data

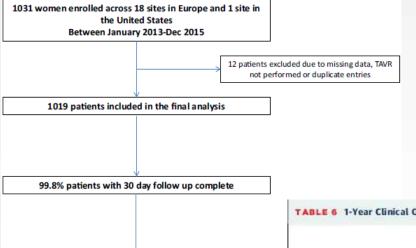
Fauchier et al, J Am Coll Cardiol. 2018 Apr 10;71(14):1528-1536

Ischemic Stroke / Transient Ischemic Attack

cardiovascular summit TCTAP 2018

Fauchier et al, J Am Coll Cardiol. 2018 Apr 10;71(14):1528-1536

CVRF


WIN-TAVI Registry

1-Year Clinical Outcomes in Women After Transcatheter Aortic Valve Replacement

Results From the First WIN-TAVI Registry

Alaide Chieffo, MD,^a Anna Sonia Petronio, MD,^b Julinda Mehilli, MD,^c Jaya Chandrasekhar, MBBS, MS,^d Samantha Sartori, PHD,^d Thierry Lefevre, MD,^e Patrizia Presbitero, MD,^f Piera Capranzano, MD,^g Didier Tchetche, MD,^h Alessandro Iadanza, MD,ⁱ Gennaro Sardella, MD,^j Nicolas M. Van Mieghem, MD, PHD,^k Emanuele Meliga, MD,¹ Nicholas Dumonteil, MD,^m Chiara Fraccaro, MD, PHD,ⁿ Daniela Trabattoni, MD,^o Ghada Mikhail, MD,^p Samin Sharma, MD,^q Maria Cruz Ferrer, MD,^r Christoph Naber, MD,^s Peter Kievit, MD,^t Usman Baber, MD, MS,^d Clayton Snyder, BSc,^d Madhav Sharma, MBBS,^d Marie Claude Morice, MD,^e Roxana Mehran, MD,^d on behalf of the WIN-TAVI Investigators

V/

98.8% patients with 1-year follow up complete

JACC: CARDIOVASCULAR INTERVENTIONS © 2018 PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

TABLE 3	Predictors of	1-Year	Death or	Stroke
---------	---------------	--------	----------	--------

	Univariate Associations		Multivariate Associations		
	HR (95% CI)	p Value	HR (95% CI)	p Value	
Age, yrs	1.03 (1.00-1.06)	0.031	1.03 (0.99-1.06)	0.126	
BMI, kgm ²	0.97 (0.94-1.00)	0.11			
Prior stroke	1.54 (0.90-2.64)	0.11			
Prior PCI or CABG	1.38 (0.96-1.99)	0.082	1.50 (1.03-2.19)	0.035	
Prior MI	1.41 (0.86-2.31)	0.17			
Baseline PAD	1.56 (0.96-2.52)	0.073			
Baseline atrial fibrillation	1.64 (1.13-2.37)	0.10	1.58 (1.07-2.33)	0.022	
LVEF <30%	1.02 (0.42-2.49)	0.97			
EuroSCORE I	1.03 (1.01-1.05)	< 0.001	1.02 (1.00-1.04)	0.013	
Baseline renal dysfunction	1.30 (0.92-1.83)	0.14			
Diabetes	0.88 (0.60-1.30)	0.53			
Frailty	0.88 (0.62-1.23)	0.44			
Discharge DAPT	0.77 (0.52-1.13)	0.18			
Discharge anticoagulant	1.54 (1.03-2.29)	0.034			
Procedure-related variables					
TAVR device generation (new vs. old)	0.88 (0.62-1.24)	0.46			
Access (transfemoral vs. nontransfemoral)	1.06 (0.61-1.83)	0.85			
Device size (>26 mm vs. ≤26 mm)	1.32 (0.88-1.96)	0.18			
Moderate or severe post-TAVR AI	1.09 (0.68-1.75)	0.73			
Female-specific characteristic	s				
History of pregnancy	0.71 (0.50-1.00)	0.050	0.73 (0.50-1.06)	0.097	
Age of menopause	1.02 (0.98-1.06)	0.32			
History of osteoporosis	0.91 (0.58-1.43)	0.69			

TABLE 6 1-Year Clinical Outcomes in Patients With and Without History of Pregnancy

	0-30 Days			0-1 Years		
	History of Pregnancy (n = 738)	No History of Pregnancy (n = 281)	p Value	History of Pregnancy (n = 738)	No History of Pregnancy (n = 281)	p Value
/ARC-2 efficacy endpoint*	35 (4.7)	21 (7.5)	0.10	116 (15.8)	51 (18.4)	0.28
econdary endpoints						
All-cause death	25 (3.4)	15 (5.3)	0.08	84 (11.4)	43 (15.5)	0.075
Stroke	5 (0.7)	7 (2.5)	0.79	12 (1.8)	10 (3.6)	0.054
Composite of death or stroke	29 (3.9)	20 (7.1)	0.14	94 (12.6)	48 (17.3)	0.049
Composite of death, MI, or stroke	30 (4.1)	20 (7.1)	0.12	102 (13.9)	48 (17.3)	0.13
Death, MI, stroke, or VARC life-threatening bleeding	49 (6.6)	26 (9.3)	0.13	119 (16.2)	53 (19.1)	0.25

Chieffo et al, JACC Cardiovasc Inter. 2018 Jan 8;11(1):1-12

Ongoing trials

TWILIGHT trial met its milestones!

Inclusion criteria

Clinical criteria (Must meet at least one)

- Adult patients ≥ 65 years of age
- Female gender
- Troponin positive acute coronary syndrome
- Established vascular disease defined as previous MI, documented PAD or CAD/PAD revascularization
- Diabetes mellitus treated with medications (oral hypoglycemic therapy or subcutaneous insulin)
- Chronic kidney disease defined as an estimated glomerular filtration rate< 60 mL/min per 1.73m² or creatinine clearance <60 mL/min

Angiographic criteria (Must meet at least one)

- Multivessel coronary artery disease
- Target lesion requiring total stent length> 30 mm
- Thrombotic target lesion

CARDIOVASCULAR SUMMIT

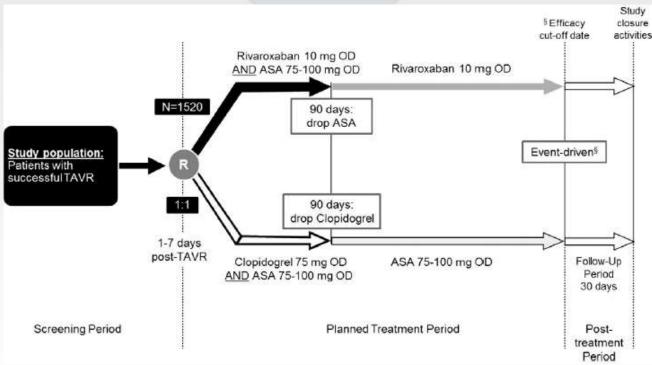
- Bifurcation lesions with Medina X,1,1 classification requiring at least 2 stents
- Left main (\geq 50%) or proximal LAD (\geq 70%) lesion
- Calcified target lesion(s) requiring atherectomy

Primary endpoint:

Clinically relevant bleeding (≥BARC 2)

twilight

Key secondary endpoint:


• Composite of death, MI or stroke

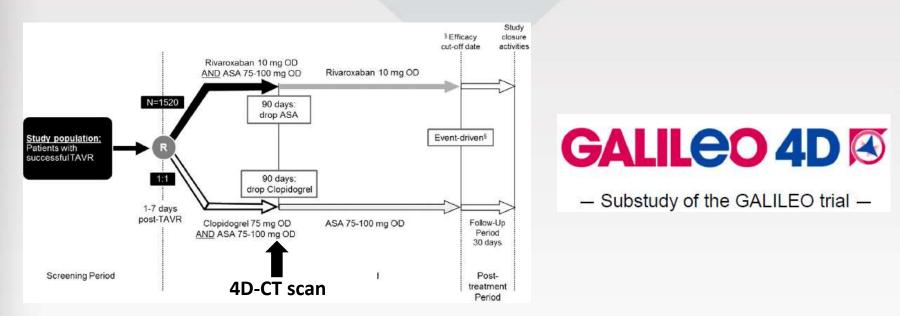
	TICAGRELOR + ASA	TICAGRELOR + ASA	SITE SPECIFIC THERAPY
= 9000	RANDOMIZE	RANDOMIZATION PERIOD ENDS	OBSERVATION PERIOD STARTS
HIGH RISK PCI PATIENTS, N = 9000	TICAGRELOR + ASA	TICAGRELOR + Placebo	SITE SPECIFIC THERAPY
5	3 MONTHS	12 MONTHS	3 MONTHS
	Short course DAPT to minimize stent-related thrombotic events	Monotherapy with potent platelet inhibitor reduces ASA-related bleeding without increasing thrombotic risk (study hypothesis) Endpoint ascertainment for primary bleeding and secondary ischemic endpoints	Standard of care therapy at the discretion of treating physician

Baber et al, Am Heart J. 2016 Dec; 182:125-134

NOAC after successful TAVR in patients without AF

Primary efficacy endpoint

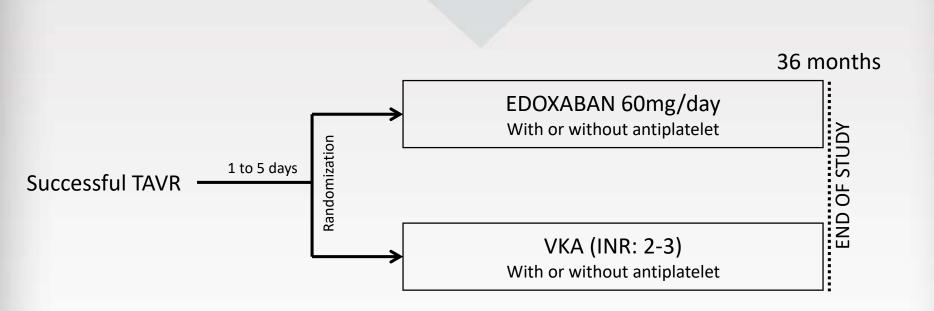
Composite of death, stroke, MI, symptomatic valve thrombosis, PE, DVT and non-central nervous system embolism


Primary safety endpoint: Bleeding events

- TIMI major and minor bleeding
- ISTH major bleeding
- BARC 2 or more

NOAC after successful TAVR in patients without AF

4D computed tomography scanner 3 months after TAVR with 300 patients


Detection of prosthetic leaflet thrombosis

CARDIOVASCULAR SUMMIT

- >50% motion reduction (primary endpoint)
- Hypoattenuated leaflet thickening (secondary endpoint)

NOAC after successful TAVR in patients with AF

ENVISAGE-TAVIAF

Primary efficacy endpoint

Composite of death, stroke, MI, ischemic stroke, systemic embolism event, valve thrombosis and ISTH major bleeding

Primary safety endpoint

ISTH major bleeding

